If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q^2+10q-1400=0
a = 3; b = 10; c = -1400;
Δ = b2-4ac
Δ = 102-4·3·(-1400)
Δ = 16900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16900}=130$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-130}{2*3}=\frac{-140}{6} =-23+1/3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+130}{2*3}=\frac{120}{6} =20 $
| 8.6^x=(0.8)^-x | | 0=2l-l | | 12=l+3l | | 6p+13=8p-9 | | 2.4(1.9r-3.2)=47 | | 16x^2+62=64x | | 18t+4t-14t-3t-t=16 | | 20y-19y=9 | | -18s+18s+11s=11 | | 16c-10c-2c-c+4c=7 | | 4e-16-5e=29 | | 4v+4v+v-5v=20 | | 3q-3q+5q=15 | | 13x+4x-15x=18 | | n+2=-14-n+ | | 14a-5a+2a+a-6a=12 | | 3h-3h+3h-h=14 | | 8h-15=45 | | 9b-7b=20 | | 4a-3a=15 | | 11s-7s=20 | | (2y/7)-(7/8)=(13/56) | | 6(-2q-1)=-(13q+2) | | 12b^2-15b=-11b | | 4x-15+x+x=90 | | 4x-12=-x+8 | | n2+3n-139=-9 | | 3x^=3/2x+3 | | 3-6y=-5+2y | | 9x=11 8 | | 5(2x+7)=-5 | | 4(3x+8)=-10+30 |